

waveguides," *IRE Trans. Microwave Theory Tech.*, vol. MTT-7, pp. 379-383, 1959.

[13] D. Mirshekar-Syahkal and J. B. Davies, "Accurate solution of microstrip and coplanar structures for dispersion and for dielectric and conductor losses," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-27, pp. 694-699, 1979.

[14] D. Mirshekar-Syahkal and J. B. Davies, "Computation of the shielded and coupled microstrip parameters in suspended and conventional form," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-28, pp. 274-275, 1980.

[15] C. P. Wen, "Coplanar waveguide: A surface strip transmission line suitable for non-reciprocal gyromagnetic device applications," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-17, pp. 1087-1090, 1969.

[16] G. Begemann, "An X-band balanced finline mixer," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-26, pp. 1007-1011, Dec. 1978.

Maximum Q -Factor of Microstrip Resonators

ANAND GOPINATH, SENIOR MEMBER, IEEE

Abstract—The quality factors of microstrip half-wavelength resonators have been calculated as a function of substrate thickness, for frequencies in the range 8-96 GHz, for different ϵ_r . Conductor, dielectric, and radiation losses have been included. The optimum substrate thickness for the maximum Q -factor for 50Ω microstrip resonators has been derived as a function of frequency for different dielectric constants.

I. INTRODUCTION

MICROSTRIP is used as the guiding and interconnecting structure in microwave integrated circuit modules up to 100 GHz. While microstrip conductor and dielectric dissipation may be expressed as loss per unit length, radiation losses may only be related to specific lengths of line. The quality factors of resonators, which include radiation losses, thus provide a guide to the losses that occur in microstrip. The Q -factors of half-wavelength resonators have been calculated as functions of substrate thickness and frequency, for some commonly used dielectric material. Belohoubek and Denlinger [1] have previously reported Q -factor calculations for $\lambda/4$ resonators using Pucel, Masse, and Hartwig's method [2] for conductor loss and Lewin's method [3] for radiation loss, over a limited frequency range. Our calculations show good agreement with their results for the 8-GHz case.

From these results, the optimum substrate thickness for maximum Q -factors of half-wavelength resonators may be obtained for a given frequency. In cases where radiation losses and spurious coupling problems exist, these calculations provide a guide to the optimum substrate thickness. When packaging eliminates these effects, the thickness is limited by the spurious mode excitation in the structure. Choice of substrate thickness may also be determined by

thermal conductance, circuit, and processing considerations as well as material availability.

II. THEORETICAL CONSIDERATIONS

The stored energy U , in a $\lambda_g/2$ resonator with a voltage distribution of $V \sin \beta_g z$ is given by

$$U = \frac{V^2}{8Z_0 f} \quad (1)$$

where Z_0 is the resonator impedance and f is the frequency. The conductor and dielectric losses W_l in the resonator are given by

$$W_l = \frac{1}{4} \frac{V^2}{Z_0} \lambda_g (\alpha_d + \alpha_c) \quad (2)$$

where α_c and α_d are the conductor and dielectric loss constants in nepers per unit length. Thus the circuit quality factor Q_0 is given by

$$Q_0 = \frac{2\pi f U}{W_l} = \frac{\pi}{\lambda_g (\alpha_c + \alpha_d)}. \quad (3)$$

The radiation Q is estimated by calculating the total power radiated W_r and evaluating the ratio

$$Q_r = \frac{2\pi f U}{W_r}. \quad (4)$$

The total quality factor Q_t is given by

$$\frac{1}{Q_t} = \frac{1}{Q_0} + \frac{1}{Q_r}. \quad (5)$$

The conductor loss constant α_c is estimated from the expression [2]

$$\alpha_c = \frac{R_s}{2Z_0 I^2} \left[\int_{-w/2}^{+w/2} J_s^2 dx + \int_{-\infty}^{+\infty} J_{gp}^2 dx \right] \quad (6)$$

where

J_s strip current;

J_{gp} ground plane current;

I total strip or ground plane current;

Manuscript received July 14, 1980; revised September 24, 1980. This work was sponsored by the Department of the Army. The views and conclusions contained in this document are those of the contractor and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the United States Government.

The author is with M.I.T. Lincoln Laboratory, Lexington, MA.

R_s surface resistivity of the metalization;
 Z_0 microstrip impedance.

It is usual to perform microstrip calculations with the loss normalized to the substrate height and in this case the appropriate loss constant is obtained from

$$\alpha_c = \frac{R_s}{2Z_0 h} F\left(\frac{w}{h}\right) \text{Np/m} \quad (7)$$

where

$$F\left(\frac{w}{h}\right) = \frac{1}{I^2} \left[\int_{-w/2}^{w/2} J_s^2 dx + \int_{-\infty}^{+\infty} J_{gp}^2 dx \right].$$

The currents J_s and J_{gp} are the longitudinal currents and obtained from the inductance calculation. Since R_s varies as \sqrt{f} , thus α_c varies linearly as \sqrt{f} and inversely as h .

Since most substrate materials used in microwave integrated circuits have low loss, a detailed estimate of dielectric losses is not necessary, and the plane wave approach due to Welch and Pratt [4] may be adopted

$$\alpha_d = \frac{\pi q \epsilon_r \tan \delta}{\epsilon_{\text{eff}} \lambda_g} \text{Np/m} \quad (8)$$

where

$$q = \frac{\epsilon_{\text{eff}} - 1}{\epsilon_r - 1}$$

ϵ_{eff} effective dielectric constant;
 ϵ_r substrate relative dielectric constant;
 λ_g guide wavelength
 $\tan \delta$ substrate loss tangent.

The radiated power is estimated by assuming that the sources of radiation include z -directed current on the resonator distributed as $I_m \cos \beta_g z$, its image in the ground plane and a polarization current directed normal to the ground plane (y -directed) and given by

$$\bar{i}_y dz = -2h \left(\frac{\epsilon_r - 1}{\epsilon_r} \right) I_m \beta_g \sin \beta_g z dz. \quad (9)$$

The radiated power is found by integration of the appropriate expressions, [5], [6] from which Q_r is obtained. The calculations in this paper were performed using numerical integrations. Note that Lewin's method [3] would assume that the radiation from the two ends of the resonator are independent, which is not strictly valid for the half-wavelength microstrip resonator, where the length of the resonator may be small compared to the free space wavelength. Hence, the method of Easter and Roberts [5] seems to be appropriate in the present case.

Easter and Roberts [5] also give an approximate expression for the radiation quality factor

$$Q_r = \frac{3\epsilon_{\text{eff}} Z_0 \lambda_0^2}{32\eta h^2} \quad (10)$$

which is valid for large ϵ_r , when $(\epsilon_r - 1)/\epsilon_r \approx 1.0$.

The quasi-static parameters of the microstrip line were calculated using the method of images. The strip is assumed to be thick and hence the currents on the top and bottom surfaces of the strip obtained from this calculation are used for the evaluation of α_c . Dispersion is corrected using Getsinger's formula [7], the velocity is estimated

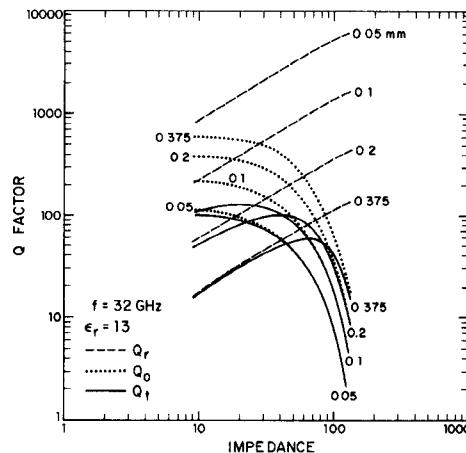


Fig. 1. Q -factor of $\lambda/2$ resonators against impedance for different thickness substrates. $\epsilon_r = 13$, $\tan \delta = 1 \times 10^{-4}$, $f = 32$ GHz, strip metal gold $3 \mu\text{m}$ thick.

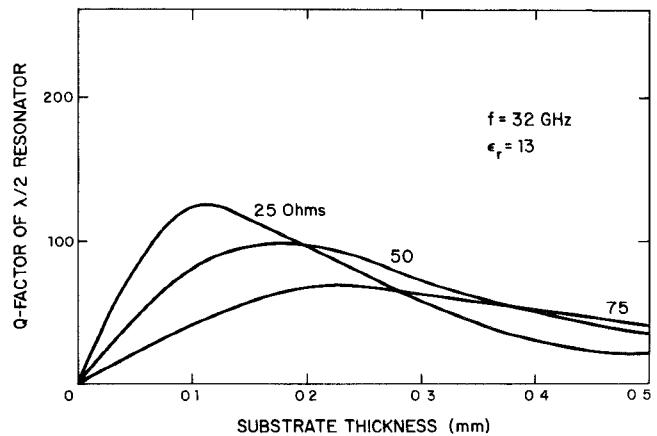


Fig. 2. Q -factor of $\lambda/2$ against substrate thickness for line impedances of 25, 50, and 75 Ω . $\epsilon_r = 13$, $\tan \delta = 10^{-4}$, $f = 32$ GHz.

using the corrected value of ϵ_{eff} with which the impedance is calculated. Values of α_d , Q_0 , and Q_r and Q_t are then calculated, and the results obtained are discussed below.

III. RESULTS

A typical set of curves obtained from the calculations are shown in Fig. 1, where the resonator Q -factor is plotted against microstrip impedance for different substrate thickness. The particular set shown in Fig. 1 is for a GaAs substrate at 32 GHz, with $\epsilon_r = 13$, $\tan \delta = 6 \times 10^{-4}$, and the strip thickness = $3 \mu\text{m}$, with gold as the metal. Note that at any impedance, the circuit quality factor Q_0 increases linearly with the substrate thickness h , and the radiation factor Q_r decreases as h^2 . From (5) the total quality factor Q_t may thus be determined by Q_0 when the substrate is thin (Q_0 is then small) or by Q_r when the substrate is thick (Q_r is small relative to Q_0). The largest values of Q_t occur when Q_0 dominates at high Z_0 and Q_r , at low Z_0 , and Q_t becomes asymptotic to the Q_0 and Q_r curves in high and low Z_0 regions. Similar curves have been obtained at different frequencies and also for different substrate dielectric constants.

The total quality factor Q_t in Fig. 1 is plotted in Fig. 2

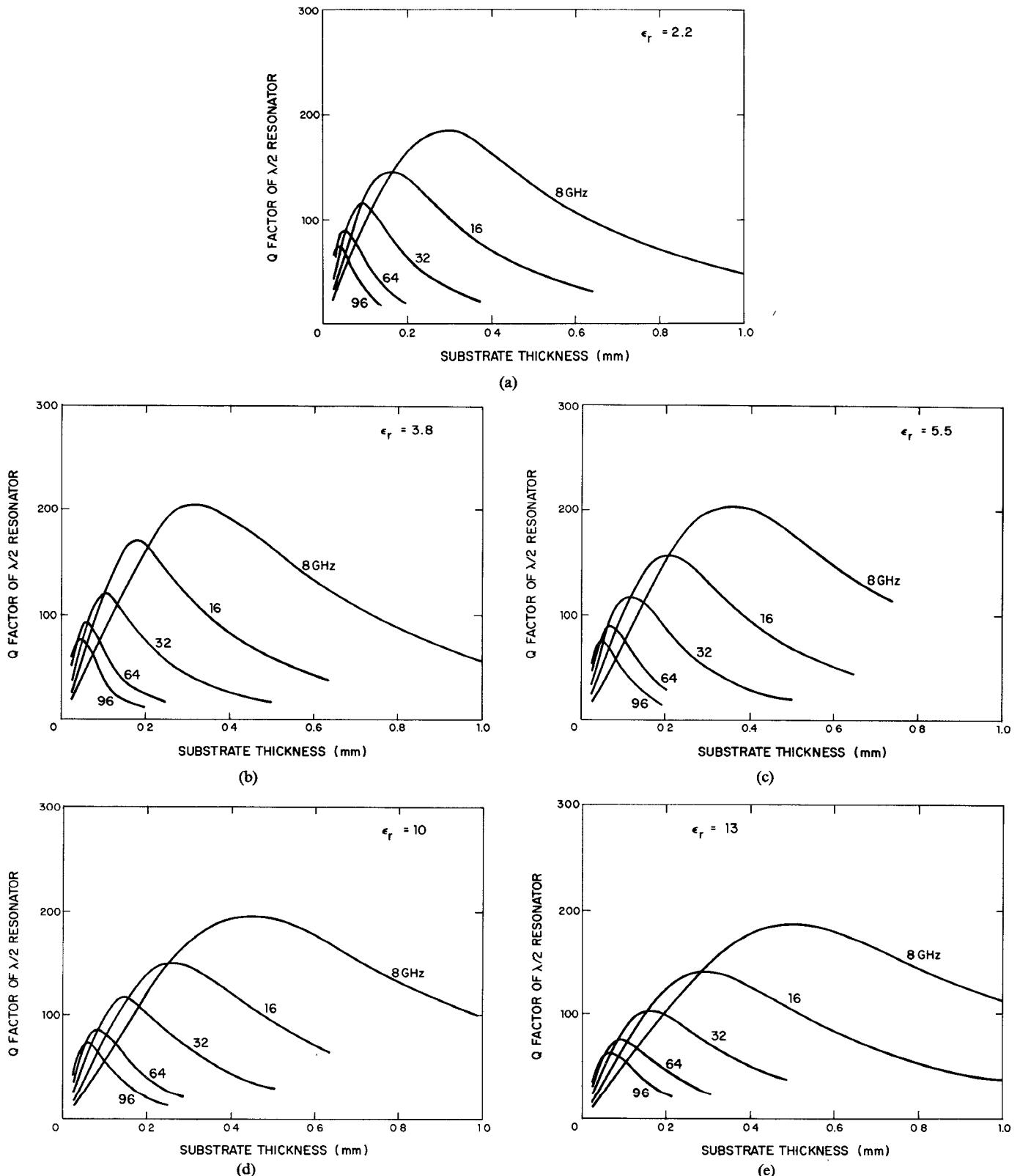


Fig. 3. Q -factor of $\lambda/2$ resonators against substrate thickness in millimeters for $Z_0 = 50 \Omega$, for different frequencies. Strip metal gold $3 \mu\text{m}$ thick. Cases considered as follows. (a) $\epsilon_r = 2.2$, $\tan \delta = 8 \times 10^{-4}$. (b) $\epsilon_r = 3.8$, $\tan \delta = 1 \times 10^{-4}$. (c) $\epsilon_r = 5.5$, $\tan \delta = 1 \times 10^{-4}$. (d) $\epsilon_r = 10$, $\tan \delta = 1 \times 10^{-4}$. (e) $\epsilon_r = 13$, $\tan \delta = 2 \times 10^{-4}$ up to 16 GHz; $\tan \delta = 6 \times 10^{-4}$ at 32 GHz; $\tan \delta = 1 \times 10^{-3}$ at 64 GHz; $\tan \delta = 1.5 \times 10^{-3}$ at 96 GHz.

as a function of substrate thickness for different line impedances, for $\epsilon_r = 13$, $f = 32$ GHz. At each impedance the curve peaks to a maximum value of Q_t at some

substrate thickness. Note that this maximum Q_t decreases with increasing impedance, and furthermore, the substrate thickness at which the maximum Q_t occurs increases from

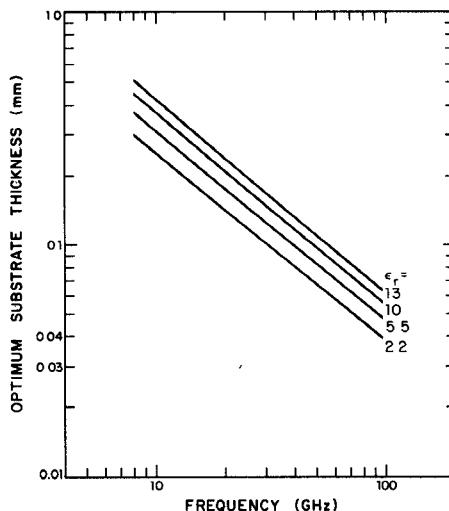


Fig. 4. Substrate thickness for maximum Q -factor against frequency for $50\text{-}\Omega \lambda/2$ resonators, for different ϵ_r .

0.11 mm for $25\text{-}\Omega$ line to 0.225 mm for $75\text{-}\Omega$ lines. The shape of these curves is discussed below in relation to the results obtained for different frequencies, and substrate dielectric constants in Fig. 3.

Fig. 3 plots the total quality factor Q_t against substrate thickness for $50\text{-}\Omega$ microstrip at different frequencies. When the circuit quality factor Q_0 dominates, note that α_c varies as \sqrt{f} , λ_g as $1/f$ and Q_0 (and hence Q_t) varies as \sqrt{f} ; this behavior is seen at the low values of h . For the thicker substrates, where Q_t is dominant, the variation of Q_t is $1/f^2$ (see (10)). Between these extremes, Q_t rises to a maximum at some substrate thickness depending on the frequency. The circuit quality factor Q_0 may be obtained from Fig. 3 by extrapolating the Q_t results at small h when radiation may be neglected.

The substrate thickness values corresponding to the maximum Q_t are plotted as a function of frequency in Fig. 4, for different ϵ_r . These curves show, for lower ϵ_r material, that thinner substrates yield the maximum Q_t values. The lower ϵ_r substrates have larger w/h ratios for $50\text{-}\Omega$ line impedance and therefore smaller substrate thickness may be used to retain Q_0 at some nominal high value. The corresponding radiation quality factor Q_t increases as the substrate thickness decreases and therefore the total quality factor Q_t shows some slight increase.

Note that for wide substrates, the surface wave TE_1 cutoff [8] at any particular frequency f occurs for a substrate thickness of

$$h = \frac{c_0}{4f \sqrt{\epsilon_r - 1}} \quad (11)$$

where c_0 is the free space velocity of light. This determines the upper limit of the permissible substrate thickness, which is much larger than the optimum substrate thicknesses obtained above.

IV. CONCLUSIONS

The optimum substrate thickness as a function of frequency, for maximum Q_t of $50\text{-}\Omega$ microstrip half-wavelength resonators, has been predicted for different ϵ_r . It appears that some slight increase in the quality factor is obtained by using lower ϵ_r substrates, $\tan \delta$ being equal, with resultant larger guide wavelengths, which may be advantageous at higher frequencies.

REFERENCES

- [1] E. Belohoubek and E. Denlinger, "Loss considerations for microstrip resonators," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-23, pp. 522-526, 1975.
- [2] R. A. Pucel, D. J. Masse, and C. P. Hartwig, "Losses in microstrip," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-16, pp. 342-350, 1968.
- [3] L. Lewin, "Radiation from discontinuities in stripline," *Proc. Inst. Elec. Eng.*, vol. 107, pp. 163-170, 1960.
- [4] J. D. Welch and H. J. Pratt, "Losses in microstrip transmission systems for integrated microwave circuits," *NEREM Rec.*, vol. 8, pp. 100-101, 1966.
- [5] B. Easter and R. J. Roberts, "Radiation from half-wavelength open-circuit microstrip resonators," *Electron. Lett.*, vol. 6, pp. 573-574, 1970.
- [6] S. Ramo and J. R. Winnery, *Fields and Waves in Modern Radio*. New York: Wiley, 1953, pp. 506-507.
- [7] W. J. Getsinger, "Microstrip dispersion model," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-21, pp. 34-39, 1973.
- [8] R. F. Harrington, *Time Harmonic Electromagnetic Fields*. New York: McGraw Hill, 1961, p. 169.